- cantor theorem
- cantor teoremi
English-Turkish new dictionary . 2009.
English-Turkish new dictionary . 2009.
Heine–Cantor theorem — In mathematics, the Heine–Cantor theorem, named after Eduard Heine and Georg Cantor, states that if M is a compact metric space, then every continuous function: f : M rarr; N , where N is a metric space, is uniformly continuous.For instance, if f … Wikipedia
Cantor — ist der Name von Bernard Gerald Cantor (1916–1996), US amerikanischer Unternehmer und Kunstmäzen, Firmengründer der Cantor Fitzgerald Eddie Cantor (1892–1964), US amerikanischer Entertainer Eric Cantor (* 1963), US amerikanischer Politiker Georg… … Deutsch Wikipedia
Cantor's theorem — Note: in order to fully understand this article you may want to refer to the set theory portion of the table of mathematical symbols. In elementary set theory, Cantor s theorem states that, for any set A , the set of all subsets of A (the power… … Wikipedia
Cantor–Bernstein–Schroeder theorem — In set theory, the Cantor–Bernstein–Schroeder theorem, named after Georg Cantor, Felix Bernstein, and Ernst Schröder, states that, if there exist injective functions f : A → B and g : B → A between the sets A and B , then there exists a bijective … Wikipedia
Cantor space — In mathematics, the term Cantor space is sometimes used to denotethe topological abstraction of the classical Cantor set:A topological space is aCantor space if it is homeomorphic to the Cantor set.The Cantor set itself is of course a Cantor… … Wikipedia
Cantor set — In mathematics, the Cantor set, introduced by German mathematician Georg Cantor in 1883 [Georg Cantor (1883) Über unendliche, lineare Punktmannigfaltigkeiten V [On infinite, linear point manifolds (sets)] , Mathematische Annalen , vol. 21, pages… … Wikipedia
Cantor's paradox — In set theory, Cantor s paradox is the theorem that there is no greatest cardinal number, so that the collection of infinite sizes is itself infinite. Furthermore, it follows from this fact that this collection is not a set but a proper class; in … Wikipedia
Cantor-Bernstein-Schröder-Theorem — In der Mengenlehre ist das Cantor Bernstein Schröder Theorem (in der Literatur uneinheitlich auch als Satz von Cantor Bernstein, als Äquivalenzsatz von Cantor Bernstein oder auch als Satz von Schröder Bernstein bezeichnet) eine Aussage über die… … Deutsch Wikipedia
Theorem — The Pythagorean theorem has at least 370 known proofs[1] In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements … Wikipedia
Cantor's theorem — Fundamental theorem of set theory, proved by Cantor in 1891. It is usually split into two parts. Cantor s theorem says that the set of real numbers is non denumerable. Cantor s power set theorem shows that the power set of any set is always… … Philosophy dictionary
Cantor , Georg Ferdinand Ludwig Philipp — (1845–1918) German mathematician The son of a prosperous merchant of St. Petersburg, at that time the capital of Russia, Cantor was educated at the University of Berlin where he completed his PhD in 1868. In 1870 he joined the faculty of the… … Scientists